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HPS Electromagnetic Calorimeter

* HPS Experiment needs the calorimeter to identify the electron/
positron pair and to construct the trigger.

* High rates requires a highly segmented design and fast readout
system.
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HPS ECAL

Design criteria: highest acceptance with available crystals, low
background=

460 PbWO4 Crystals (2 segments, 5 rows of 46 crystals)
Vacuum box with cutout region for beam
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Design criteria: highest acceptance with available crystals, low
background=

460 PbWO4 Crystals (2 segments, 5 rows of 46 crystals)
Vacuum box with cutout region for beam



Available Crystals: PbWOA4

Lead-Tungstate
crystals available
from inner
calorimeter of CLAS.

Energy resolution:
o/E ~4.5%/VE
(GeV)

460 crystals available
See: CLAS-Note 2005-007

Support PbWO4 crystal
v\_frapped Stainless
with YM200 steel APD

foil wires Mother board

Optical fiber

Preamplifier J
connector

Connector

Avalanche Photo Diode

Connection board
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+ thermal screen P
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[E.Cal Signal

* Full length of the signal (APD+pre-amplifiler) is ~60 ns

* For triggering purposes signal will be integrated in 32 ns (8 FADC
samples) time window after passing the threshold

* BEvery 16 ns integrated pulses will be sent to trigger board (8 bits)

* The full pulse, 64 ns (16 FADC samples, 2 before threshold crossing)
will be read out for analysis
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Test Run Stimulation

Pair Spectrometer Dipole

Frascati magnet /./
Calorimeter Box

Vacuum box with tracker
Full simulation of the experiment
implemented in GEANT4: \
® Based on CLASI12 simulation (gemc)
® Flexible geometry from database allows N;B/

for rapid prototyping. N
: N

e Full GEANT4 physics model. >

® Field maps for magnetic fields.

/

N
-

e A’ events from generator (MadEvent)
e Background from electrons through target.



Simulated ECAL. Performance
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-\ Electron beam region

Rates on crystals right
around the electron beam
exit are too high.

100 MeV Threshold, AT=8 ns
25% occupancy ~ 31 MHz

I5
25 0

idx
! 10




Multiple Configurations Tried

Either cutting the crystals around the electron beam exit, or eliminating
them all together and / or opening up the gap between the plates.




Details, run 26 contiguration

Crystals -1 through -8 eliminated.

10mm space next to crystals
Hole rounded on both sides
Plates reduced thickness (5 mm)

#-1 #-3 #-5 #-8 #-9

28.33mm
[1 mmi < 60mm
center @-33.96mm @-51.5Tmm center @ -225mm




Added Support Pillar

Support pillar is

1/2 way between
electron gap and end
of vacuum system.

3 Runs:
1) Solid Aluminum

2) Honeycomb Alum
3) Vacuum (check)




Iffects of the Support Pillar
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Study by Sarah Phillips

The effect of the support pillar is
insignificant, if using “honeycomb”
material.

Assumption that “honeycomb” can be

correctly approximated with “airy
aluminum” will be checked.
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Iffects of the Support Pillar

| IC Hits,no threshold, with plates and no pillar |
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Pillar - No Pillar, run24

IC Hits, no theshold, no pillar, run24
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ECAL Performance
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F.CAL: Performance (“Run26”™

| IC Hits, 500 MeV Threshold, Eliminate -8 -> -1 |
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Level 1 Trgger Algorithm

Trigger algorithm will be implemented in FPGA units.

® Fast parallel processing of information.
® Fairly sophisticated operations possible.
® 4 ns clock cycle, allows for trigger coincidence down to AT = 8 ns.

Simulation of trigger in two steps:

® Simple cluster finding algorithm.
® Strict trigger selection criteria
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Trigger: Cluster Finding

Two “interesting”” events in the calorimeter.

[Hits in ECal, A’ 75 MeV__| Hit Energy MeV [_Hits in ECal, AT=8ns_ | Hit Energy MeV
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Set loose criteria to find many clusters:
|. For each hit with E > 50 MeV.

2. Search 3x3 square for other hits.

3. If no hit has more energy — Store hit
4. Else = move to next hit.
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Store hit: Add energies of 3x3 square if within 8 ns of center hit.



Trigger Selection

Find additional criteria to reduce background rates.
Objective:

 Reduce the background rate to < 25 kHz (50 kHz HWV limit)
 Keep acceptance of A’ particles close to maximum

Simulated Data sample:
3 M background events representing 4 ns of beam each.

200 nA = 5,000 e- per 4 ns event @ 2.2 GeV.
0.125% Xo Tungsten target.
Two 4 ns events are combined to simulate 8 ns trigger time.

Simulated A’ masses:
25,75, 100, 150,200, 250 MeV.



Trigger Selection

Trigger Cut. 75 MeV/c2 A’

Background

Background rate

2+ Clusters, Opposite sect. 38.9%

|.16%

|.5 MHz

Starting point:

Two clusters, one e- one e+: Opposite quadrants of
detector = Background trigger rate = 1.5 MHz

| Hitsin ECal, AT=32ns |
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Trigger Selection

Trigger Cut. 75 MeV/c2 A’ Background Background rate
2+ Clusters, Opposite sect. 38.9% |.16% |.5 MHz
|00MeV< Ecuster <1.85 GeV 53.9% 0.80% .0 MHz

2 E<=2GeV 51.7% 0.27% 337 KHz
(Epeam™sampling fraction)

Eni - Elo< 1.5 GeV 51.6% 0.22% 275 kHz

| -st level cuts:

Both clusters have 0.] < E <|.85 GeV = Bkg rate =~ 1.0 MHz
Sum of cluster E <=2 GeV
Diff of cluster E < 1.5 GeV = Bkg rate = 275 kHz

(Details of cut depend on actual sampling fraction)

Caveat: Double counting! Three clusters can now account for 2
triggers, both of which are counted!

20




Trigger Selection

Trigger Cut. 75 MeV/c2 A’ Background Background rate
2+ Clusters, Opposite sect. 38.9% |.16% .5 MHz
|00MeV< Eciuster <1.85 GeV 53.9% 0.80% .0 MHz
2 E<=2GeV 51.7% 0.27% 337 KHz
(Epeam™sampling fraction)
Eni - Eo< 1.5 GeV 51.6% 0.22% 275 kHz
Distance vs Energy slope cut 45.7% 0.05% 63 kHz
Background 75 MeV A' mass
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Trigger Selection

Trigger Cut. 75 MeV/c2 A’ Background Background rate
2+ Clusters, Opposite sect. 38.9% |.16% |.5 MHz
|00MeV< Eciuster <1.85 GeV 53.9% 0.80% 1.0 MHz
2 E<=2GeV 51.7% 0.27% 337 KHz
Eni- Eo< |5 GeV 51.6% 0.22% 275 kHz
Distance vs Energy slope cut 45.7% 0.05% 63 kHz
Clusters coplanar to 35 44.8% 0.022% 27 kHz
Not counting double 33.6% 0.020% 25 kHz
triggers
Eliminate crystals 1,2 33.6% 0.016% 20 kHz

Background rate = 25. * 1. kHz.

3 M events simulated, 607 triggers.

22




A’ Mass Simulation

* A’ events are simulated by theorist.
* Events are rotated to align with the photon beam in apparatus.
* Events are processed by MC

* Result is analyzed with identical algorithm and cuts as before.
* Tracking is NOT included:

* No background is overlaid on A’ events. This would artificially falsely
the trigger efficiently.

* True experimental acceptance is less than shown here.
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Iffect on Acceptance

ECAL Acceptance i
< 20 New design has only
“F = s it small effect on
- T unee S rystals, witle gap acceptance while
305— ==  Run26: Eliminate -1 -> -8 Slgnlflcantly reducing
250 the background rates.
20—
15;
10/
5
- I5|0I — I1(|)0I — I15|0I — I2(|)0I — I2£‘|'>0I |
A' Mass [MeV]
25 MeV | 50 MeV | 75 MeV | 100 MeV | 150 MeV | 200 MeV | 250 MeV
Nominal 6.5% 29% 38% 34% 16.8% 7.6% 4.2%
eR kR P e e et o | reno 16% 7.0% 3.8%
Eliminated




TO DO last:

* Final tweaks of geometry to correspond to engineering designs (see
Emmanuel Rindel’s talk)

* Move simulation of ECal & Trigger to SLIC/lcsim framework.

* Combine ECal performance with Tracker performance for overall
experiment acceptances.

* Incorporate measured signal shape & study pileup + possible FADC
algorithms.
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Conclusions

* To bring the rates on all individual crystals down to below 4% for 8 ns
time slices (< 5 MHz), eliminate crystals -8 through -1.

* Complicated vacuum enclosure will be needed.

* Relatively small effect on acceptance.
* Improves background trigger rate as well.

* Trigger rates are well under control.
+ Still a big “to do” list.
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