

HPS Collaboration Meeting.

May 27, 2011

HPS Electromagnetic Calorimeter

- HPS Experiment needs the calorimeter to identify the electron/ positron pair and to construct the trigger.
- High rates requires a highly segmented design and fast readout system.

HPS Collaboration Meeting, May 27, 2011

HPS ECAL

Design criteria: highest acceptance with available crystals, low background⇒ 460 PbWO4 Crystals (2 segments, 5 rows of 46 crystals) Vacuum box with cutout region for beam

HPS ECAL

Design criteria: highest acceptance with available crystals, low background⇒ 460 PbWO4 Crystals (2 segments, 5 rows of 46 crystals) Vacuum box with cutout region for beam

Available Crystals: PbWO4

Lead-Tungstate crystals available from inner calorimeter of CLAS.

Energy resolution: $\sigma/E \sim 4.5\%/\sqrt{E}$ (GeV)

460 crystals available See: CLAS-Note 2005-007

ECal Signal

- * Full length of the signal (APD+pre-amplifiler) is ~60 ns
- For triggering purposes signal will be integrated in 32 ns (8 FADC samples) time window after passing the threshold
- * Every 16 ns integrated pulses will be sent to trigger board (8 bits)
- The full pulse, 64 ns (16 FADC samples, 2 before threshold crossing) will be read out for analysis

HPS Collaboration Meeting, May 27, 2011

Test Run Simulation

Simulated ECAL Performance

Multiple Configurations Tried

Either cutting the crystals around the electron beam exit, or eliminating them all together and / or opening up the gap between the plates.

Details, run 26 configuration

Crystals -1 through -8 eliminated. 10mm space next to crystals Hole rounded on both sides Plates reduced thickness (5 mm)

Added Support Pillar

Support pillar is 1/2 way between electron gap and end of vacuum system.

3 Runs:1) Solid Aluminum2) Honeycomb Alum3) Vacuum (check)

Effects of the Support Pillar

Study by Sarah Phillips

The effect of the support pillar is insignificant, if using "honeycomb" material.

Assumption that "honeycomb" can be correctly approximated with "airy aluminum" will be checked.

Effects of the Support Pillar

IC Hits, no threshold, with plates and AlHex pillar ic hit loc · ¹⁵ Entries 2.848463e+07 Mean : -4.845 60 Mean v -0.0003593 10 RMS x 8.62 RMS v 3.027 50 5 40 0 30 -5 20 -10 10 20 25 -20 -15 idx

Adding the vacuum enclosure plates increases the noise in the detector overall.

It slightly *decreases* the noise due to the pillar (solid aluminum).

Details of Sarah's results at:

http://nuclear.unh.edu/~sarahp/HPS/Ecal_Studies/Comparison1/Ecal_AlBlockStudiesComparison.html

Pillar - No Pillar, run24

idy 6 60 4 50 2 40 0 -30 -2 20 10 -4 -6 0 25 20 -20 -15 -5 5 15 -10 0 10 idx

ECAL Performance ("Run26")

IC Hits, 100 MeV Threshold, Eliminate -8 -> -1

100 MeV Threshold Occupancy now <4% Rate ~ 5 MHz max.

ECAL Performance ("Run26")

IC Hits, 500 MeV Threshold, Eliminate -8 -> -1

500 MeV Threshold Occupancy now <2% Rate ~ 2.5 MHz max.

Threshold can be raised on only a few "hot" crystals.

Level 1 Trigger Algorithm

Trigger algorithm will be implemented in FPGA units.

- Fast parallel processing of information.
- Fairly sophisticated operations possible.
- 4 ns clock cycle, allows for trigger coincidence down to $\Delta T = 8$ ns.

Simulation of trigger in two steps:

- Simple cluster finding algorithm.
- Strict trigger selection criteria

Trigger: Cluster Finding

Two "interesting" events in the calorimeter.

Set loose criteria to find many clusters:

- I. For each hit with E > 50 MeV.
- 2. Search 3x3 square for other hits.
- 3. If no hit has more energy \rightarrow Store hit
- 4. Else \rightarrow move to next hit.

Store hit: Add energies of 3x3 square if within 8 ns of center hit.

Find additional criteria to reduce background rates. Objective:

- Reduce the background rate to < 25 kHz (50 kHz HW limit)
- Keep acceptance of A' particles close to maximum

Simulated Data sample:

3 M background events representing 4 ns of beam each. 200 nA \approx 5,000 e- per 4 ns event @ 2.2 GeV. 0.125% X₀ Tungsten target. Two 4 ns events are combined to simulate 8 ns trigger time. Simulated A' masses:

25, 75, 100, 150, 200, 250 MeV.

Trigger Cut.	75 MeV/c ² A'	Background	Background rate	
2+ Clusters, Opposite sect.	Clusters, Opposite sect. 38.9%		I.5 MHz	

Starting point: Two clusters, one e- one e+: Opposite quadrants of

detector \Rightarrow Background trigger rate ≈ 1.5 MHz

Trigger Cut.	75 MeV/c ² A'	Background	Background rate
2+ Clusters, Opposite sect.	38.9%	1.16%	I.5 MHz
100MeV< E _{cluster} <1.85 GeV	53.9%	0.80%	I.0 MHz
ΣE <= 2 GeV (E _{beam} *sampling fraction)	51.7%	0.27%	337 KHz
E _{hi} - E _{lo} < 1.5 GeV	51.6%	0.22%	275 kHz

I-st level cuts:

Both clusters have $0.1 < E < 1.85 \text{ GeV} \Rightarrow Bkg rate \approx 1.0 \text{ MHz}$

```
Sum of cluster E <= 2 GeV
```

Diff of cluster E < 1.5 GeV \Rightarrow Bkg rate \approx 275 kHz

(Details of cut depend on actual sampling fraction)

Caveat: Double counting! Three clusters can now account for 2 triggers, both of which are counted!

Trigger Cut.	75 MeV/c ² A'	Background	Background rate	
2+ Clusters, Opposite sect.	38.9%	1.16%	I.5 MHz	
100MeV< E _{cluster} <1.85 GeV	53.9%	0.80%	I.0 MHz	
Σ E <= 2 GeV (E _{beam} *sampling fraction)	51.7%	0.27%	337 KHz	
E _{hi} - E _{lo} < I.5 GeV	51.6%	0.22%	275 kHz	
Distance vs Energy slope cut	45.7%	0.05%	63 kHz	

Heavy Photon Test Run Review - DOE, German Town, March 1st

Trigger Cut.	75 MeV/c ² A'	Background	Background rate	
2+ Clusters, Opposite sect.	38.9%	1.16%		
100MeV< E _{cluster} <1.85 GeV	53.9%	0.80%	I.0 MHz	
Σ E <= 2 GeV	51.7%	0.27%	337 KHz	
$E_{hi} - E_{lo} < 1.5 \text{ GeV}$	51.6%	0.22%	275 kHz	
Distance vs Energy slope cut	45.7%	0.05%	63 kHz	
Clusters coplanar to 35°	44.8%	0.022%	27 kHz	
Not counting double triggers	33.6%	0.020%	25 kHz	
Eliminate crystals 1,2	33.6%	0.016%	20 kHz	

Background rate = 25. ±1. kHz.

3 M events simulated, 607 triggers.

A' Mass Simulation

- * A' events are simulated by theorist.
- * Events are rotated to align with the photon beam in apparatus.
- Events are processed by MC
- * Result is analyzed with identical algorithm and cuts as before.
- * Tracking is NOT included:
 - No background is overlaid on A' events. This would artificially falsely the trigger efficiently.
 - * True experimental acceptance is less than shown here.

Effect on Acceptance

ECAL Acceptance

New design has only small effect on acceptance while significantly reducing the background rates.

	25 MeV	50 MeV	75 MeV	100 MeV	150 MeV	200 MeV	250 MeV
Nominal	6.5%	29%	38%	34%	16.8%	7.6%	4.2%
-8 to -1 Eliminated	5.46%	21.6%	33.6%	32%	16%	7.0%	3.8%

- Final tweaks of geometry to correspond to engineering designs (see Emmanuel Rindel's talk)
- * Move simulation of ECal & Trigger to SLIC/lcsim framework.
- Combine ECal performance with Tracker performance for overall experiment acceptances.
- Incorporate measured signal shape & study pileup + possible FADC algorithms.

•

Conclusions

- To bring the rates on all individual crystals down to below 4% for 8 ns time slices (< 5 MHz), eliminate crystals -8 through -1.
 - Complicated vacuum enclosure will be needed.
 - * Relatively small effect on acceptance.
 - * Improves background trigger rate as well.
- Trigger rates are well under control.
- Still a big "to do" list.

HPS Collaboration Meeting, May 27, 2011